The Bottlenecks Developers Encounter and the Engineering Solutions for My Next Phase of Development
开发者遇到的瓶颈和我下一步开发的工程解法 (中文在后面)
In my current development work, I want to start by clarifying—at the level of engineering theory—what it actually means for individual or independent developers to use AI to build larger-scale systems:
what kinds of difficulties we will inevitably encounter,
which bottlenecks are structural rather than incidental,
what problems I personally intend to tackle as this project moves into its next phase, and
how I plan to approach them.
I plan to write this as a series of essays.
This is because I am not writing from a position where the problems have already been solved and neatly summarized afterward. I am still very early in the process, actively exploring and probing. For that reason, I prefer to treat writing itself as part of the system. Before each phase begins, I publish an article focused on theory and planning; after a phase completes, I follow up with another piece that includes code, implementation details, test results, and reflection. This approach significantly reduces my cognitive load. The denser the development becomes, the heavier the mental burden grows—and sometimes when an article gets long, even the page takes a few seconds to load. At the same time, this gives long-time readers a more continuous stream of information. As exploration goes deeper, not every path will succeed, and not every attempt will produce the results I hoped for. But the exploration itself, the discussion itself, and the intermediate decisions and failures are all worth making public. This aligns closely with the system worldview I am building: through dense interaction with large language models, I have not only changed the boundary of what I personally can build, but fundamentally reshaped how I think systems themselves should grow.
I now even believe that failures must be written into the ledger. They are not disposable, one-off accidents that simply evaporate as in traditional CI/CD pipelines; they are historical facts that deserve to be recorded, replayed, and held accountable over time. This implies a completely different notion of “release”: a release is no longer just the act of publishing code, but the moment when a system formally commits a judgment, a path, and its associated cost into its own timeline.
At the same time, I deliberately write some pieces without code blocks at all—pure conversation, pure engineering thought. They are easier to read, yet denser in information. Writing becomes an external, auditable interface of the system, rather than a burdensome afterthought appended once development is finished. For example, if a phase takes one or two weeks to complete, forcing everything into a single retrospective article often makes me anxious, as I try to cram too much into one place.
Returning to the most fundamental bottleneck: what is actually wrong with large-model-assisted development today? About a year and a half ago, I experienced a strong shock. Sometime in 2024, on a whim, I decided to build a Kotlin app—I do not even remember which GPT version it was. In just four hours, I completed an entire mobile application from scratch. In that moment, I realized that it was not simply that “learning Kotlin had become faster,” but that the boundary of individual engineering capability had been forcefully lifted by the model. At the same time, I became even more certain that I did not want to keep doing this kind of work.
I was becoming increasingly opposed to the attention economy. I did not want to continue producing apps under the logic of Web 2.0, or building so-called AI wrapper applications that merely add more low-value code to the world. On my own phone, I had already deleted almost every app—only banking apps and my children’s school payment software remained.
The real problem was this: at that time, I genuinely did not know what to build. Most people were simply watching large language model capabilities skyrocket, without yet finding a system form that truly matched those capabilities. It was only a few months ago, when the idea of genuinely AI-native systems began to be discussed within a very small circle, that I gradually started to see the direction.
If what you are building is not a small Kotlin project that can be finished in four hours, but a genuinely ambitious system that must grow over time, you will almost immediately collide with a set of very real and deeply structural bottlenecks. I ran into all of them myself, very quickly and very directly.
These problems are often collectively labeled as “the context problem of large models,” but that phrase already understates the severity of what is actually happening. It is too vague, too mild, and completely insufficient to describe the real engineering failure modes at play.
The first bottleneck you encounter is what I call the window bottleneck (Attention / UI Entropy).
Once you step away from VSCode or the chat window, the system effectively freezes. The cost of returning is extremely high; large portions of context are lost. As a result, once you are “in the flow” of development, you are afraid to leave the window at all. The conversation grows longer and longer, the code gets deeper and deeper, and you know intuitively that if you close or switch away, that state will not come back. When you try to open a new window or start a new conversation, the quality immediately degrades—you instinctively feel that “this is no longer the same system as before.” This is not a simple problem of context length. It is an entropy problem caused by the coupling of UI and human attention: the system only remains “alive” inside the small region of the window you are continuously attending to. Once you detach from it, continuity is lost. This is arguably the most painful problem we face right now.
Immediately after that, you run into the consistency bottleneck (Consistency / Drift). The principles, architectures, and judgments the model gives you in one session seem perfectly reasonable; in the next session, it operates under a different logic entirely. Coding style drifts. Boundary conditions drift. Naming drifts. Even the definition of “what matters” drifts. Many people still attribute this to “insufficient context” or “model degradation,” and yes, there are crude ways to mitigate it—writing far more documentation, repeatedly restating constraints. To be honest, this is exactly how I am coping with it right now: I am brute-forcing consistency through documentation. But this only reveals a deeper truth: consistency is not something the model provides by default. It is an engineering property that must be actively maintained by the system.
Going further, you inevitably hit the accountability-over-time bottleneck. Six months later, you can no longer clearly answer the question, “Why did we do it this way?” Or even if you can, the cost of reconstructing the reasoning is unacceptably high. You can say that large language models are fundamentally probabilistic systems—and that is true. But when building AI-native systems, I keep repeating one sentence: “Large models can be probabilistic, but your system must be deterministic.” This principle underlies nearly all of my architectural decisions going forward. In the real world, 99% of serious application scenarios do not want a “probably good” answer; they require outcomes that are predictable, reproducible, auditable, and replayable. From an engineering standpoint, the probabilistic nature of models and the determinism of systems are not inherently in conflict—but the problem is large enough that it must be treated seriously. Even taking the most conservative view: if AI systems cannot meet the basic engineering requirements of reliability, reproducibility, auditability, and replay in real applications, then they simply cannot sustain the trillions of dollars in valuation expectations that have accumulated in recent years. A system that only talks, but cannot be treated seriously, will eventually be rejected by reality.
Finally, you collide with the most direct and brutal bottleneck of all: the solo throughput ceiling. Tasks cannot be parallelized. As system complexity increases, you are forced to rely on sheer willpower to maintain coherence. The effectiveness of AI remains trapped inside the window. You are still the same human being, with only a few hours a day of truly focused cognitive capacity. Even with AI assistance, you cannot support a large, long-lived system purely through mental load; the pressure quickly exceeds the threshold, and the system begins to fall apart. Your skills, energy, and cognitive capacity simply do not match the ambition inflated by AI. This is the clearest realization I have reached: without system-level infrastructure, relying on prompts, windows, and ad-hoc conversations, the idea of a “super individual” is a fantasy. Real personal leverage must expand horizontally—through systems that extend the individual—rather than by remaining glued to a window and burning attention.
Where I am now, and what kind of system-level experiment I plan to attempt next
I have just finished building an MCP Bus, and I can already feel the load rising very clearly—not because I “can’t write code anymore,” but because system complexity has started to consume my attention, judgment, and internal consistency in reverse. At this stage, continuing to expand capabilities horizontally, adding more agents, or piling on more features would only amplify the bottlenecks I described earlier at the same time: the window becomes stickier, consistency becomes more fragile, history becomes harder to account for, and the personal ceiling arrives faster.
So the next thing I plan to do immediately is not to build a “smarter agent,” but to build a Release Bot. At first glance, this may not seem directly related to the problems discussed above, because when most people hear “release bot,” they instinctively think of automated releases, auto-merging, CI/CD pipelines, or yet another agent managing workflows. I am choosing it at this exact moment precisely because it is not that simple—it is my first deliberate attempt to use a system-level, institutionalized mechanism to directly constrain and alleviate the entire cluster of bottlenecks described above.
The Release Bot here is not a tool that “helps me ship code.” It is an entry point. It forces judgments that previously existed only in my head—“Should this step continue?”, “Is this change worth entering history?”, “Should this failure be recorded?”, “Does this attempt count as a release?”—to become explicit, structured, and auditable. In other words, I am not building a feature-oriented bot; I am using “release,” a node that is naturally and inherently tied to time, history, and responsibility, as the first lever to pull the development process out of ephemeral, window-bound conversations and into a track that can be governed, replayed, and constrained by the system itself.
This is also the smallest experiment I can run to test a much larger hypothesis: if I cannot even free the question of “whether to release” from the attention window, then any more complex AI-native system built on top of it is pure fantasy.
Let me first be very clear about what this Release Bot actually is, and then explain why it reflects a deeper shift in how I think about long-term systems in the age of intelligent models.
At a surface level, a Release Bot sounds mundane—another piece of automation sitting somewhere between commits and deployment. But in my case, release is not a delivery operation, and the bot is not an executor. The Release Bot is a decision boundary. It sits at the point where a system must decide whether something deserves to enter history. That sounds abstract, but it is extremely concrete: every non-trivial system eventually accumulates changes, experiments, reversals, partial failures, and local optimizations. Most of these disappear into chat logs, abandoned branches, or forgotten context. The Release Bot exists to interrupt that evaporation. Its primary function is not “ship,” but ask—explicitly, consistently, and in a form that the system itself can remember—questions like: Is this change intentional? Is it coherent with existing constraints? Is it worth being recorded? What assumptions does it lock in? What risks does it accept? In that sense, the bot is less like CI/CD and more like a constitutional checkpoint: it turns tacit human judgment into an explicit, structured act that the system can later replay, audit, and reason about.
This is where it connects to my broader shift in thinking about long-term systems under intelligent assistance. In traditional software engineering, time is cheap and memory is disposable: failures fail fast, logs roll over, and the system’s “story” is reconstructed only when something goes catastrophically wrong. In an AI-accelerated environment, this becomes actively dangerous. The velocity of change increases, but human accountability does not scale at the same rate. If decisions remain implicit—made in windows, chats, and moments of flow—then intelligence simply accelerates entropy. What I am trying to do instead is invert the relationship: use intelligence to force decisions to slow down at the right points, to crystallize intent before the system moves forward. The Release Bot embodies that inversion. It treats release not as an endpoint, but as a commitment in time—a moment where the system acknowledges, “We chose this path, for these reasons, under these constraints, accepting these costs.”
This also reflects a deeper belief I now hold about intelligent systems: that progress without memory is not progress, it is drift. In a long-lived system, especially one built by a single developer augmented by AI, the scarcest resource is not code or ideas, but coherent continuity over time. The Release Bot is my first concrete attempt to encode that continuity into the system itself, rather than carrying it in my head. It externalizes judgment, makes failure first-class, and treats history as an asset rather than a byproduct. In short, it is not a productivity tool; it is an experiment in governance—testing whether, in an intelligent era, we can build systems that do not merely move faster, but remember why they moved at all.
Do you have a head full of question marks right now? That’s exactly what I expect. Let’s try to clear the fog with simple Q&A.
This is normal, because what you’re looking at is not a “familiar species.” It’s not CI/CD. It’s not an agent demo. It’s not even just an automation script.
So for now, we will not explain, not defend, and not do value-signaling. We will do only one thing: lay out every question that a competent, experienced engineer would inevitably ask at this moment.
You can treat this as an FAQ, a checklist, or a collection of “first reactions.” Overall, I believe that in the intelligent era, we are facing a flood of machine-generated code—so much that, very soon, whether we can still understand it or even read through it will stop mattering (most likely we won’t: we won’t understand it, and we won’t keep up). The first thing we must rescue is not the code, not the spaghetti pile, not the system, but ourselves. We have to save ourselves first from the overwhelming complexity we are about to face.
I. The most intuitive questions (“Am I overthinking this?”)
1) Isn’t a Release Bot just an automation script for CI/CD?
In traditional CI/CD, the core question is “Can it run? Can it ship?” But what I’m building now (MCP Bus + Policy Gate + Replay) answers a different question: “Should this become history?”
In my system, the Release Bot is not a deployment executor. It is an entry gate for Intent → Governance → Evidence → Replay. It turns “preparing a release” into an auditable decision, not an automated action.
Concretely, here are the artifacts I already have:
The MCP Bus is already producing governance verdicts (an evidence chain of ALLOW / DENY / OVERRIDDEN), and I’m writing that into an accountable medium like
runtime_data/mcp10_bus_decisions.jsonl.I also require
tests/test_mcp10_governance_smoke.pyto freeze the evidence chain (DENY → OVERRIDDEN), which means I’m treating governance outcomes as long-term system facts, not disposable logs.
So the Release Bot is not “making CI/CD a bit more automatic.” It is institutionalizing the threshold for entering history: release = this change is recognized by the system, bound to evidence, and locked into replay.
2) Why don’t I finish the features first and think about release later?
Because my current bottleneck is not “insufficient features.” It is that complexity is starting to consume me: the window becomes sticky, consistency drifts, regression cost explodes, and after two weeks I can’t recover the whole system state. Continuing to pile on features only amplifies these problems.
At this stage, the Release Bot is my smallest “anti-entropy device.” It forces me—before expanding capabilities—to make the history entry point controllable.
Engineering-wise, what it solves is simple:
I’m already building a Replay Plan (a replayable step definition like
runtime_data/mcp06_replay_plan.json), which means “reproducibility” is already a system requirement.The natural next step is not adding features, but institutionalizing which changes are allowed to enter replayable history—otherwise the replay target becomes a smear of noise.
So I’m not saying “govern after building everything.” I’m saying: establish the rules for entering history first, so that future features don’t become unmaintainable noise growth.
3) Without users, deployments, or production, what am I even releasing?
I am not releasing “to users.” I am releasing an engineering judgment into the system’s timeline:
release = “this change is worth being acknowledged by the system, and can be explained, replayed, and audited in the future.”
For a long-term system like mine, the most important “users” are future me + future models + future collaborators.
And I’m already proving this with code:
I have an observability event stream (e.g.,
runtime_data/observability/observability_events.jsonl, plus the export and invariant-testing work I’ve done). That stream is raw material for “the system narrating its own history.”I have DecisionRecords (I’m freezing the v1 schema). They are not written for online users; they are written for time.
So the target of release is historical explainability, not a deployment environment.
4) Does a personal project really need release as an “ritual”?
If a personal project is just a one-off script, no. But what I’m building is a ten-year system kernel, and the most fatal problems for an individual developer are not technical—they are:
attention cannot be sustained,
memory cannot be reliably externalized,
decisions cannot be reproduced by the self,
progress cannot be recovered across time.
So release here is not a ritual. It is an engineering interface that liberates the individual from the window. I cannot maintain long-term consistency through willpower alone; I can only do it by institutionalizing an entry gate and letting the system carry the responsibility of “remembering why.”
Otherwise, the stronger I become, the faster I move, and the larger things I attempt, the more likely I am to drown in the complexity I created myself—this is the ceiling of independent development.
5) Isn’t it too early to do release now?
The opposite: earlier is cheaper; later is disaster.
If you don’t draw boundaries for governance and replay while complexity is still low, and you wait until you’ve stacked a dozen capabilities, dozens of paths, and hundreds of implicit constraints, then “adding release logic” later becomes a painful reconstruction. You no longer know which history is trustworthy, which decisions were temporary improvisations, and which constraints have already drifted.
Given my current pace, the timing is perfect:
the MCP Bus is newly built and governance verdicts already exist (DENY / OVERRIDDEN),
replay/regression is already forming,
and I already feel the load rising.
That means the system has crossed from “it runs” into the threshold of “it can slip out of control.” The earlier the release gate is established, the more stable everything becomes afterward.
6) If it’s just experiments, why not change it and throw it away?
Because for me, “experiments” are not disposable actions. They are units of system learning. What I want is not one successful experiment; I want a system that can answer over time:
What did we try?
Why did it fail?
What were the boundary conditions of the failure?
Which paths were falsified, and which paths were retained?
When a similar situation appears again, what should we invoke—or avoid?
This is the engineering meaning of “failures must enter the ledger”: failure is not trash; it is governance asset.
And I’m already using tests to “freeze the failure evidence chain” (e.g., governance smoke tests). That means I’m not writing stories. I’m writing executable history: failure → verdict → override → evidence → replay. Throwing it away is equivalent to deleting the system’s most valuable immune system.
Compress those six answers into one sentence:
For me, the Release Bot is not automated shipping. It is the smallest device that makes the system start taking responsibility for its own history. It is driven by Intent, constrained by Governance, solidified by Evidence, and made reproducible by Replay—rescuing the individual from window-stickiness and memory evaporation.
II. Confusion about Release itself (“What does release actually change?”)
1) In my system, what counts as a release?
A release = a historical write that is approved by governance, bound to evidence, and reproducible via replay.
At minimum it requires three things (and my repo structure is already moving toward them):
Explicit Intent: “why we did this” is not a sentence inside a chat; it lands as a structured intent (even if short).
Governance verdict: Policy Gate / MCP Bus yields ALLOW / DENY / OVERRIDE with accountable records (I already have media like
runtime_data/...decisions.jsonl).Evidence + Replay lock: the evidence bundle can be replayed and verified in the future (I’m already building replay plans, regression tests, observability invariants).
So in my system, release is not “a code state.” It is a three-in-one historical node: decision + evidence + reproducibility.
2) Does a failed attempt count as a release?
Yes—but it’s a different type: a Fail-Release, as long as it yields reusable boundary information.
What matters is not success or failure, but whether the attempt produces an auditable conclusion, such as:
what conditions triggered failure,
which path was falsified (so we don’t waste time again),
why governance DENIED or why an OVERRIDE occurred (I even freeze this evidence chain),
whether replay can reproduce the failure reliably.
If the failure is random, evidenceless, and irreproducible, it should not be released—it is a noisy event that belongs in logs pending diagnosis. But if the failure can be frozen into a replayable counterexample, then it becomes an immune-system asset and must be released.
3) Without deployment or users, what is the meaning of release?
The “users” of my release are future me + future models + whoever might maintain the system later.
Because I’m building a long-term system: the core pain is not delivery speed but recoverability across time. Release matters because it:
migrates “why we did this” out of my head and into the system (DecisionRecords),
migrates “how the system ran” out of the window and into replayable chains (replay + regression),
migrates “what happened” out of fragmented logs and into auditable event streams (observability / ledger).
In other words: without deployment, release becomes even more important, because it is the only way to prove I’m advancing inheritable system history rather than a window-bound mental state.
4) How does release relate to commit / merge / deploy?
They are four layers: related, but not equivalent.
commit: the smallest fact of code change (Git layer).
merge: admitting facts into the mainline (branch governance layer).
deploy: projecting facts into a runtime environment (delivery layer).
release (my definition): elevating facts into a historical commitment (time-governance layer).
So in my system:
a commit is usually not worth a release,
a merge does not automatically equal a release (merges can be housekeeping),
deploy can happen after release—or never happen at all (especially while building the kernel).
The Release Bot sits before or alongside merge/deploy: it decides whether something enters history, and emits DecisionRecords + evidence bundles + replay hooks.
5) Is release a technical event or a cognitive event?
Both—but my key move is to engineer the cognitive event.
Traditionally, release is mostly technical (versioning, tags, deployment). In my system, release is:
a cognitive event: an explicit “should we?” judgment,
a governance event: a rule verdict (allow/deny/override),
a technical event: reproducibility being frozen (tests/replay pass).
I’m not treating “cognition” as motivational talk; I’m converting it into executable structure—DecisionRecords, policy verdicts, replay regressions—inside the responsibility chain of a long-term system.
6) If I release ten times a day, won’t history explode?
Not if release is layered and compressed, instead of treating all events as equal.
I can apply the same systems engineering approach I already use elsewhere:
Layering:
micro: events/logs (observability jsonl),
meso: decisions/reasons (DecisionRecords),
macro: milestones (tags/seasons).
Most things stay micro; fewer become meso; very few become macro.
Thresholding: the Release Bot raises the bar—only what is explainable, reproducible, and accountable gets promoted.
Compression/compaction (I already carry this mindset through memory ETL and compaction):
many micro-releases can compress into one macro-release,
failures can cluster into “counterexample sets,”
repeated decisions can become templates as policy evolves.
So the goal is not fewer releases. It’s releases with semantic hierarchy and compression.
7) What happens to things that don’t get released?
In my system, “not released” is not one thing. It becomes different destinies:
Draft: still useful in the window, but not in history; can be overturned anytime.
Quarantine: denied or insufficient evidence; preserved for later diagnosis but blocked from mainline influence.
Staging/Sandbox: experimentation allowed, but explicitly marked as “non-historical commitment” to avoid contaminating replay baselines.
Garbage collection: if unused, unreferenced, and evidenceless, it gets cleared.
Promotion to Release: if later proven important (recurring, boundary-defining), it can be upgraded by attaching decision + evidence.
So “not released” does not mean “forgotten.” It means: the system does not owe long-term explainability or replay responsibility for it.
III. Foundational questions about Intent (“What layer is Intent?”)
1) Is Intent written by humans, or generated by AI?
The accountable owner of Intent is always the human—but its expression can be AI-assisted.
In my system, Intent is not defined by “who typed the words,” but by who carries responsibility over time for that direction.
AI can draft, expand, restate, compress Intent, or even propose candidate Intents. But the moment an Intent is eligible to enter the release pipeline and the historical ledger, final authorship and responsibility must come back to the human.
This matches the role separation already implied by my MCP / Policy Gate design:
AI is the proposer,
the system is the governor,
the human is the accountability anchor.
Otherwise, Intent collapses into prompt-text—and history becomes unaccountable.
2) What is the essential difference between Intent and requirements?
Requirements describe “what we want.” Intent specifies “why we are taking this path now.”
Requirements are feature-oriented: they assume the direction is correct and focus on constraints and acceptance criteria.
Intent is time-oriented and path-oriented. It makes explicit:
why this direction rather than alternatives,
why now rather than later,
what uncertainty this step is trying to validate or lock in,
what risks and costs are being knowingly accepted.
That is why Intent must appear before release, while requirements often emerge only during implementation. Requirements without Intent simply accelerate drift.
3) How large should an Intent be? What granularity?
Intent granularity is determined by whether the system should carry historical responsibility for it.
A practical engineering test is:
If, in the future, I would be willing to write a dedicated DecisionRecord answering “why we took this step,”
then it deserves an Intent.
So an Intent is not a feature, not a task. It’s closer to:
a path choice,
a hypothesis bet,
a micro-turn in system direction,
the introduction or adjustment of a governance rule.
My MCP Bus, Policy Gate, and Replay are already operating at this granularity—not per line of code, but per “judgment.”
4) Is Intent one-off, or does it evolve?
Intent is not one-off. It can evolve—but it cannot be overwritten.
This is a core long-term system principle:
Intent can be revised, refined, and converged,
but it cannot be erased as if it never existed.
Engineering-wise, that means:
a new Intent does not “edit” the old one; it creates a new version or a derived Intent,
the old Intent stays in history as evidence of “what we believed at the time.”
Otherwise the system loses its ability to understand its own evolution.
5) When Intent changes, what happens to the old Intent?
Old Intents are not deleted. They are downgraded, terminated, or sealed.
I treat Intent as a governance state machine:
ACTIVE: currently driving the system forward
SUPERSEDED: replaced by an updated Intent (path correction)
ABANDONED: explicitly dropped (failed experiment / wrong hypothesis)
ARCHIVED: completed its mission and enters history
INVALIDATED: falsified (a critical counterexample)
A key point here:
The “failed state” of an Intent is itself a system asset.
It provides counterexample boundaries for future governance, policy design, and replay.
6) Are Intent and release one-to-one?
Not one-to-one—but every release must anchor to at least one Intent.
The relationship is more like:
one Intent → multiple attempts → potentially multiple releases,
multiple small releases → collectively serve one Intent,
one major release → may complete or terminate multiple Intents.
But there is no such thing as “release without Intent.” Otherwise release collapses into a purely technical event, and the system’s history becomes inexplicable again.
7) If the Intent itself is wrong, how does the system carry that error?
This is the most important Intent question—and my system already sketches the answer:
The system carries error not by hiding it, but by remembering it in structured form.
Concretely:
the wrong Intent is marked INVALIDATED / FAILED,
related releases become “failure releases,”
replay is used to reliably reproduce the failure boundary,
governance absorbs the counterexample and tightens or adjusts rules.
In other words:
Error is not a system’s shame; it is a system’s learning input.
What is unacceptable is not that an Intent is wrong, but that:
the error happened and the system doesn’t know,
the error is overwritten and history is falsified,
the same error repeats under the same conditions.
This is the real engineering meaning of “failures must enter the ledger” at the Intent layer.
In my system, Intent is not a requirement and not a prompt—it is a time-bound directional declaration. It is accountable to humans and can be AI-assisted; it can evolve but cannot be overwritten; it can fail but cannot be erased. Intent granularity is determined by whether the system should carry historical responsibility, not by feature size. Releases must anchor to Intent, and failed Intents become structured counterexample assets for governance and replay. System reliability is not achieved by avoiding error, but by remembering error and constraining the future.
IV. Anxiety about Governance (“Is this limiting creativity?”)
1) Will governance slow development down?
It slows “local actions,” but speeds up “system-level progress.”
Governance does not optimize the speed of single edits. It prevents you from moving fast while quietly diverging.
I’ve already experienced this: without governance, everything feels fast inside the window, but once you leave, continuity collapses. Short-term speed becomes long-term stagnation—or regression.
Governance front-loads the thinking cost:
should we continue,
should this enter history,
should we carry this failure.
It slows some actions, but it directly reduces:
repeated trial-and-error,
silent rollback,
the brutal recovery cost of “what was I doing?” two weeks later.
So the trade is: less instant speed, more time-scale speed.
2) When must governance be applied, and when can it be bypassed?
There is exactly one criterion:
Will the system need to be responsible for this in the future?
Must go through governance:
anything that enters release (enters history),
anything that affects replay/baselines,
introducing or changing policy/capability,
changing system boundaries or default behaviors,
anything that future-me must explain.
Can bypass governance:
pure sandbox exploration,
one-off debugging,
temporary experiments that don’t enter history and don’t affect replay.
This is not “freedom vs control.” It’s responsibility zoning:
I’m not banning bypass—I’m declaring that bypassed work is not entitled to long-term responsibility guarantees.
3) Who defines the rules—you, the system, or AI?
Rule sources can be plural, but the accountability anchor must be me.
The role separation is:
human: final accountable owner of rules,
AI: proposer / aligner / simulator,
system: enforcer and recorder.
AI can suggest policy, identify holes, simulate outcomes. The system can enforce, deny, and record overrides. But only the human can carry responsibility over time for whether the rules are legitimate. Otherwise governance collapses into “model opinion.”
4) Is governance fixed, or does it evolve?
It must evolve—but the evolution itself must be governed.
Fixed governance becomes obsolete. Arbitrary governance becomes untrustworthy.
I’m already moving in the right direction:
policy has versions,
decisions are recorded,
overrides leave evidence chains (DENY → OVERRIDDEN).
That implies:
Governance can change, but changing governance must itself become a release.
Rules are not eternal truths; they are replayable historical products.
5) What if governance is wrong?
This is the real test.
The answer is not “never be wrong.” The answer is:
When governance is wrong, it must leave a learnable trace.
Meaning:
not silent failure,
but explicit DENY/ALLOW + observed consequences,
corrected via override/revision,
and the “why it was wrong” is written into decision/replay.
If governance can never be wrong, it becomes bureaucracy. If its mistakes are not recorded, it becomes black-box power. My governance smoke tests are precisely about this.
6) What’s the difference between governance and a policy gate?
Policy Gate is a mechanism. Governance is an institution.
Policy Gate: a concrete enforcement point that outputs ALLOW / DENY / OVERRIDE; testable, automatable, replayable.
Governance: the full structure of who can do what, under what conditions, and how accountability is assigned—policy + decision records + override rules + evolution rules.
I already have policy gates; the Release Bot is how I upgrade them into an institutional system. The gate is the knife; governance decides who can use it, when, and what happens when it’s misused.
7) Does a personal system really need a “constitution”?
If “constitution” means non-negotiable top-level constraints and responsibility principles, then yes:
the more personal the system, the more it needs one.
Because the threat in personal systems is not “abuse of power,” but:
memory evaporation,
judgment drift,
emotional overrides,
long-term coherence collapse.
My constitution doesn’t need to be grand. It only needs to answer:
when must the system stop and ask “should we continue,”
who is responsible for entering history,
how failures are treated,
whether overrides must leave traces.
It’s not to restrict me; it’s to protect future-me from being sabotaged by past-me.
V. Replay confusion (“What am I actually replaying?”)
1) Is replay replaying code state, or decision process?
Both—but the priority is decision process first, code state second.
Code state answers “what it looked like.”
Decision process answers “why we did it, under what constraints, at what cost.”
My work already indicates this: freezing DENY → OVERRIDDEN as tests and writing verdicts into decision logs means I’m replaying “how the institution ruled,” not just “did it run.”
So replay is evidence-driven historical reenactment, not “rerun scripts.”
2) Can you really reproduce the judgment back then?
I’m not reproducing the model’s internal judgment. I’m reproducing the system’s external commitments.
LLM internals are not reproducible. But I can reproduce:
the Intent,
the governance verdict (ALLOW/DENY/OVERRIDE + policy version),
the evidence bundle (inputs/outputs/files/hashes/tests/observability),
the verifiable outcome (pass/fail invariants).
That’s my principle in engineering form:
models can be probabilistic; systems must be deterministic—not deterministic outputs, but deterministic commitments that are testable and accountable.
3) Is replay for humans, or for AI?
System first, then human, then AI.
system: replay regression is self-check; without it there is no foundation.
human: two weeks later, I need replay + decision records to restore global state.
AI: only after history is constrained and packaged can AI collaborate without accelerating drift.
Replay is what upgrades AI from “window helper” to “system collaborator.”
4) If the model changes, does replay still matter?
It matters even more.
Replay doesn’t aim to reproduce identical text. It verifies:
policy execution consistency,
invariants stability,
path reproducibility,
historical explainability.
Model changes make replay the fuse against vendor drift: it separates what must remain deterministic at the system layer from what is allowed to vary at the suggestion layer.
5) What’s the minimum unit of replay—release or intent?
Minimum executable unit: a verifiable Step. Minimum semantic unit: a Release. Intent is a higher-level organizer.
Step (in
replay_plan.json): executable smallest unit.Release: smallest accountable historical unit.
Intent: organizes multiple releases into a coherent path.
So: Step → Release → Intent.
6) How does replay relate to tests?
Tests are the decision language. Replay is the time framework.
Tests alone say “does it pass now.”
Replay + tests say: “why must it pass; which historical commitment does it serve; which release/decision is it validating.”
Governance smoke tests are not testing a function—they are testing whether governed history still holds.
7) What value does replaying failures provide?
Failure replay is more valuable than success replay: it is counterexample capital and an immune system.
Success says “it worked then.”
Failure says:
where the boundary is,
which path was falsified,
which policies must tighten or loosen,
which invariants must be strengthened,
where overrides happened and why.
This is the engineering meaning of “failures must enter the ledger”: once a failure is reproducible, it can become policy, tests, and future automated judgment.
VI. Fundamental doubts about “long-term systems”
1) What qualifies as a long-term system—how long is “long-term”?
It’s not defined by years; it’s defined by whether you must be responsible for the past.
If any of these are true, you’re already in long-term territory:
two weeks later you can’t continue without memory reconstruction,
you must explain “why we did this” or you can’t move forward,
one mistake repeats across time,
you can’t fully restore system state just by reading code.
For me, long-term began the moment MCP Bus + policy + replay appeared. Time is an amplifier, not the threshold.
2) Why think about 5–10 years now?
Because I’m already writing irreversible assets: policy, governance rules, decision records, replay entrances, memory/ledger. These become baselines future systems depend on. If I wait five years to explain them, history becomes speculation instead of evidence.
I’m not “planning for ten years.” I’m acknowledging I’m already manufacturing ten-year debt—or ten-year assets.
3) If the project fails, is all of this wasted?
No—because what fails is a path hypothesis, not the infrastructure of responsibility.
Intent/Governance/Release/Replay are path-independent assets:
MCP Bus can be replaced; governance and replay principles survive.
An agent architecture can fail; decision records and replay remain transferable.
A repo can die; the method of “how to be responsible for a system” remains.
A project can die; structured failure becomes startup capital for the next generation.
4) Are long-term systems only for companies, not individuals?
The opposite: they matter more for individuals.
Teams have redundancy: shared memory, division of labor, documentation and handoff practices. Individuals have one brain, limited attention, and severe context evaporation. The window stickiness, regression cost, and judgment drift I face are exactly how personal systems collapse without governance and replay. Companies can rely on humans; individuals must rely on systems.
5) If only you use it, does it still matter?
It matters even more—because the real collaborator is not “other people,” but your future self: two weeks later, six months later, under a different model and environment.
Release/Decision/Replay answer: “Can future me trust present me?”
If not, the system can only sprint.
6) Are you trying to fight AI uncertainty?
Not fight—isolate.
I’m not trying to make models deterministic. I’m constraining uncertainty into governable boundaries:
model proposes possibilities,
system decides and remembers,
uncertain outputs must pass governance before entering history.
Again: probabilistic models, deterministic systems.
7) If AI changes fast, how does your system avoid becoming obsolete?
AI changing faster makes my system more valuable.
Because my design treats models as replaceable proposal layers, while history, responsibility, governance, and replay are locked at the system layer. When models upgrade, I don’t rebuild the system; I:
replay to verify what still holds,
governance to absorb new power without breaking invariants,
intent to choose whether new paths are worth taking.
This is exactly my direction: by 2026, I want partial decoupling from any single model.
VII. The relationship between personal capability and systems (“Does the human still matter?”)
1) Is the Release Bot making decisions for you, or forcing you to decide?
It doesn’t decide for me—it removes my right to make decisions unconsciously.
Without it, I’m still deciding—just inside windows, dependent on attention state, irreproducible, unaccountable. The Release Bot forces “already-made but unacknowledged decisions” into explicit structure: Intent, governance verdict, evidence, replay hooks.
It’s not autopilot. It’s brakes + dashboard. I’m still driving; I just can’t pretend I didn’t choose the path. (A good metaphor: think of it as customs clearance.)
2) Will the human’s role be gradually weakened?
Not weakened—compressed, while responsibility is amplified.
The system takes: memory, execution, consistency checks, replay verification. The human retains what the system cannot replace: final accountability for intent, moral and directional overrides, value tradeoffs, and deciding which failures are worth carrying.
This is not reducing the human; it is freeing the human from cheap cognitive labor while making real judgment non-escapable.
3) Are you building a tool or a “second brain”?
Not a second brain—a time-externalized responsibility structure.
A “second brain” implies “remember more, compute faster.”
What I’m doing is closer to: “I refuse to rely on memory and vibes to be responsible for the past.”
The system doesn’t replace thinking; it preserves why I thought what I thought, under what conditions, and it asks future-me whether the path still holds. This is not intelligence amplification; it is responsibility amplification.
4) If someone else maintains it later, can it survive?
If it can, that proves I built it correctly.
I’m not stockpiling personal tricks; I’m encoding judgment into structure, reasons into records, boundaries into tests, history into replayable media. A successor doesn’t need to be “as smart as me.” They need to: understand intent, respect governance, run replay, accept historical constraints.
If the system only lives because I’m alive, then it’s still just a personal mental state amplified by AI—not a long-term system.
5) Are you writing this for your future self?
Yes—and that’s the most honest and most demanding user profile.
Future-me will have incomplete memory, different emotions, different models, and possibly different standards. Every Intent, DecisionRecord, Policy, and Replay Test I write is asking future-me:
“Without knowing my mood and window context back then, can you still understand, verify, and continue this system?”
If yes, it’s a long-term system. If no, acceleration is a short-term illusion.
The Release Bot is not a machine that decides for humans; it is a device that forces humans to take responsibility for decisions that have already been made. It does not weaken the human role—it extracts the human from execution and memory, leaving only what is irreducible: accountability and value judgment. What I’m building is not a second brain, but a time-externalized responsibility structure: it remembers why I chose a path and asks future-me whether I still endorse it. That is why the system can survive a maintainer change—and why every line of code I write now is essentially collaboration with my future self: not to move faster, but to avoid getting lost.
And from here, I’ll use the two whitepapers I’ve published as anchors, and go deeper—technically—into the engineering system I’m constructing in my head.
现在我的开发,我想把“个人/自由开发者借助 AI 做较大工程”这件事,先从工程理论层面讲清楚:
我们到底会遇到什么困难、
哪些瓶颈是结构性的、
我自己在这个工程走到下一阶段时准备解决哪些问题、
打算怎么做
——并把这些写成一组文章。
我这个阶段的代码还在写,还没有push, 所以有些预设也许不会成功,也许延迟。但这些都是我当下想到的,以及已经决策好的工程规划。
因为此刻我不是已经把问题解决了才回头总结,而是刚开始不久、正在摸索,所以我更愿意把写作当成系统的一部分:每个阶段开始之前先发一篇“理论与计划”,阶段完成之后再连着代码、实现细节、测试结果与反思发一篇“落地与复盘”。它能显著降低我的心智负担。开发越密集,负担越重,有时候文章一长,页面加载都要卡几秒。同时也让老读者拿到更连续的信息,因为越往深处走,不一定每条路径都会成功,也不一定每次探索都能得到我期待的好结果,但探索本身、讨论本身、以及中途的决策与失败,都值得被公开记录;而这恰好与我正在建造的系统观密切相关:与大模型的密集交互,让我不仅改变了“我能做什么”的边界,更彻底改变了“系统应该如何生长”的世界观:
我现在甚至认为,失败也必须进入 ledger,它不是传统 CI/CD 里那种“失败就蒸发”的一次性事故,而是一种需要被记入历史、可回放、可追责的事实;
这也意味着一种完全不同的 release 观:release 不是单纯发布代码,而是系统把某个判断、某个路径、某个代价,正式写入自己的时间线。
与此同时,我也会刻意写一些没有代码框的文章,纯聊天、纯工程思想,读起来更轻,但信息密度更高。让写作成为一种“系统的外部可审计接口”,而不是开发之后才补写的负担。比如1,2周才完成一个阶段,写一篇文章我自己都很焦虑,想把一堆内容塞进去。
回到最基础的瓶颈:大模型辅助开发到底有什么问题?我大概一年半以前就经历过一次强烈的冲击: 2024 年某天心血来潮去做一个 Kotlin App(我都不记得当时是 GPT 几了),只花了 4 个小时就把一个手机应用从零做完;那一刻我意识到,是“个人工程能力的边界被模型硬生生抬高了”,但同一瞬间我也更确定:我不想继续做这种东西:
因为我开始越来越反对“注意力经济”,我不想沿着 Web 2.0 的逻辑继续生产 App、继续做所谓的 AI 套壳应用,那只是在世界上新增一堆意义不大的无用代码;我自己的手机也早已把大部分 App 卸载得差不多了,只剩银行和孩子学校的付费软件。
可问题在于:当时我真的不知道该开发什么。大部分人只是看着大模型能力飞速飙升,却还没找到与之匹配的系统形态。直到几个月以前,“真正 AI 原生(AI-native)系统”的理念开始在很小范围内被讨论,我才慢慢意识到方向。
如果你做的不是一个 4 小时就能完成的 Kotlin 小项目,而是一个真正有野心、需要在时间中生长的工程,你几乎会立刻撞上一组非常现实、而且高度结构性的瓶颈。我自己也是在很短时间内,就完整地撞上了它们。
这些问题往往被统称为“大模型的上下文问题”,但这个说法本身就已经暴露了问题的严重性:它过于模糊,过于轻描淡写,完全不足以描述真实发生的工程困境。
首先出现的是我称之为窗口瓶颈(Attention / UI Entropy)的问题:
一旦你离开 VSCode 或对话窗口,系统就像被冻结了一样;
回来的成本极高,上下文大量丢失,于是你在“开发上头”的状态下根本不敢离开窗口,聊天越拉越长,代码越写越深,你心里清楚一旦关掉或切换,状态就回不来了;
而当你试图再开一个窗口、再起一个对话,效果立刻变差,你会本能地觉得“这个已经不是刚才那个系统了”。这根本不是简单的“上下文长度”问题,而是一种由 UI 与注意力耦合造成的工程熵增:系统只能在你持续注视的那一小块窗口里维持“活性”,一旦脱离,就失去连续性。这个问题应该是我们现在最糟心的。
紧接着你会遇到的是一致性瓶颈(Consistency / Drift):
这一次模型给你的原则、架构、判断看起来非常合理,下一次却又换了一套逻辑;代码风格在漂移,边界条件在漂移,命名在漂移,甚至连“什么是重要的”都在漂移。
很多人仍然把这归结为“上下文不够”“模型降智”,当然,也确实可以用一些“笨办法”缓解,比如更密集地写文档、更频繁地总结约束。
老实说,我自己现在也确实是靠文档在硬扛这个问题。
但这只能说明一个事实:一致性不是模型自动提供的能力,而是你必须通过系统手段去维持的工程属性。
再往下,你会不可避免地碰到可追责瓶颈(Accountability over Time):
半年之后,你已经无法清楚回答“当时为什么要这么做”,或者即使能回答,代价也高得不可接受。你当然可以说,大模型本质上是一个概率系统;但我在做 AI 原生系统时一直强调一句话:
“大模型可以是概率的,但你的系统必须是确定的。”
这是我后续几乎所有架构决策中的一个核心原则。现实世界中 99% 的严肃应用场景,要的从来都不是一个“也许不错”的概率输出,而是可预期、可复现、可审计的确定结果;而且从工程角度看,**大模型的概率性与系统层面的确定性并不必然冲突。**这个问题足够大,需要被认真对待。
退一万步说,如果 AI 在真实应用中无法解决可靠性、可复现、可审计、可 replay 这些最基本的工程要求,那么它根本支撑不起这几年飞速膨胀到万亿规模的市场预期,回退几乎是必然的——一个只会说话、却无法被严肃对待的系统,终究会被现实淘汰。
最后,你会撞上最直接、也最残酷的瓶颈:个人天花板瓶颈(Solo Throughput Ceiling):
任务无法并行,系统复杂度一上来,你只能靠意志力去维持一致性;AI 的有效性仍然被锁死在窗口里,人还是你这个人,一天就那么几个小时真正能高强度集中的时间。即便有 AI 加持,也不可能仅靠心智负荷撑起一个复杂而长期的工程——压力会迅速超过阈值,结果就是系统失控。你的能力、精力、智力,根本配不上被 AI “吹涨”的野心。这也是我最清醒地意识到的一点:如果没有系统级的基础设施,仅靠 prompt、靠窗口、靠临时对话,所谓“超级个体”根本不可能成立;真正的个人能力跃迁,必须是横向扩展,通过系统延伸出来的,而不是继续把自己黏在一个窗口里消耗注意力。
我现在做到哪里了?我下一步要做什么样的系统级尝试
我现在刚做完一个 MCP Bus,就已经非常清晰地感受到负荷在迅速上升:不是“代码写不动了”,而是系统复杂度开始反过来消耗我的注意力、判断力和一致性本身。这个阶段再继续横向扩展能力、继续加 agent、继续堆功能,只会让前面提到的那些瓶颈同时恶化——窗口更粘、一致性更脆、历史更难追责、个人天花板更快到顶。
所以我接下来打算立刻做的一件事,并不是再做一个“更聪明的 agent”,而是去做一个 Release Bot。这一步乍看之下和前面讨论的那些问题并不直接相关,因为一提到 release bot,大多数人的第一反应是:自动发版、自动合并、CI/CD 自动化、又一个 agent 在管流程。但我之所以在这个节点选择它,恰恰是因为它并不简单——它是我第一次有意识地尝试,用一个系统级的、制度化的机制,去正面约束和缓解我上面描述的那一整组瓶颈。、
Release Bot 在这里并不是“帮我把代码发出去”的工具,而是一个切入口:它强迫我把那些原本只存在于我脑子里的判断,“这一步应不应该继续”“这个改动值不值得进入历史”“失败要不要被记录”“这次尝试算不算一次 release”,显式化、结构化、可审计化。换句话说,我不是在做一个功能型 bot,而是在用“release”这个天然与时间、历史、责任强相关的节点,第一次把开发过程从窗口里的即时对话,拉进一个可以被系统接管、被回放、被约束的轨道里。这也是我用来测试一个更大假设的最小实验:如果我连“是否 release”都不能从注意力窗口里解放出来,那后面任何更复杂的 AI 原生系统,都是空谈。(你说是不是?)
我们先把一件事说清楚:这个 Release Bot 到底是什么,以及它为什么不是一个“流程自动化小工具”,而是我在智能时代做长期系统时,一个明显发生转向的体现。
从表面看,Release Bot 听起来很普通——像是又一个夹在 commit 和 deployment 之间的自动化组件。但在我这里,release 并不是一次交付动作,Bot 也不是执行器。Release Bot 的真实身份,是一个决策边界(decision boundary):它站在“某个变化是否值得进入历史”的门口。这个说法听起来抽象,但在工程上极其具体——任何非平凡系统,都会不断产生修改、实验、回滚、半失败的尝试和局部优化,而其中绝大多数,最后都会蒸发在聊天窗口、废弃分支或遗忘的上下文里。Release Bot 的存在,就是为了在这个蒸发发生之前,强行打断这一过程。它的核心职责不是“发版”,而是提问:而且是以显式、稳定、可被系统记住的形式提问——“这一步是有意为之的吗?”“它和已有约束是否一致?”“这个改动值不值得被写入历史?”“它锁定了哪些假设?”“它接受了哪些风险和代价?”从这个角度看,Release Bot 更像一个宪法级的关口,而不是 CI/CD 的延伸:它把原本只存在于我脑子里的隐性判断,变成一次结构化的、可回放、可审计的系统行为。
而这正好映射了我在做长期系统时,一个非常明显的认知转变。传统软件工程里,对“时间”和“历史”的态度是很轻的:失败就快速失败,日志会滚动覆盖,系统的“故事”往往只在出了大事故之后才被回溯性地拼凑出来。但在 AI 加速的环境里,这种模式会变得危险——变化速度被极大放大,而人的判断与责任却并不会线性扩展;如果决策仍然停留在窗口里、对话中、灵感瞬间里,那么智能只会加速熵增,而不是带来秩序。我现在试图做的,恰恰是反过来:在关键节点上,利用智能迫使系统“慢下来”,让意图在系统继续推进之前被凝固下来。Release Bot 正是这个反转的第一个落点。它把 release 从“一个结果”变成“一次时间中的承诺”——系统在这一刻明确地承认:“我们选择了这条路径,基于这些理由,在这些约束之下,接受这些成本。”
这背后还有一个我现在越来越确信的判断:没有记忆的进步,并不是真正的进步,而只是漂移。对于一个要活在时间里的系统,尤其是一个由单个开发者、在 AI 辅助下构建的系统,最稀缺的资源从来不是代码或想法,而是跨时间的一致性与连续性。Release Bot 是我第一次把这种连续性从“靠人脑维护”,转移到“由系统自身承担”的具体尝试。它把判断外置,把失败升级为一等公民,把历史当作资产而不是副产物。从这个意义上说,它不是一个生产力工具,而是一次治理实验:测试在智能时代,我们能不能构建出不仅跑得快,而且能回答“我们当年为什么这样做”的系统。
你脑子里一堆问号对不对?我们尝试用简单的问答来基本解惑。
这是正常的,因为你看到的不是一个“熟悉物种”的东西:它不像 CI/CD,也不像 agent demo,更不像自动化脚本。
所以我们先不解释、不辩护、不上价值,只做一件事:把一个正常、有经验的工程师此刻一定会问的问题全部摊开。
你可以把它当成 FAQ、Checklist,或者“读者第一反应集合”。总的来说,我认为在智能时代,我们面临的是海量生成的大量代码,以后真的也不管我们还看不看得懂,看不看的过来了(大概率是既看不懂也看不过来)。第一个先拯救的,绝对不是代码,不是屎山,不是系统,而是我们自己。把我们自己先从超高复杂性面前解救出来。
一、最直觉的问题(“这是不是想多了?”)
1) Release Bot 不就是 CI/CD 的一个自动化脚本吗?
在传统 CI/CD 里,核心问题是 “能不能跑、能不能发”;而我现在这套(MCP Bus + Policy Gate + Replay)在回答的是 “应不应该成为历史”。
Release Bot 在我的系统里不是“部署执行器”,而是一个Intent→Governance→Evidence→Replay 的入口闸门:它把“准备 release”这件事变成一次可审计决策,而不是一次自动化动作。
对应到我现在的实物资产:
MCP Bus 已经在产出治理判定(ALLOW/DENY/OVERRIDDEN 的证据链),而且我已经把它写进了
runtime_data/mcp10_bus_decisions.jsonl这种“可追责介质”。我还要求用
tests/test_mcp10_governance_smoke.py去固化证据链(DENY → OVERRIDDEN),这说明我已经在把“治理结果”当作长期系统事实而不是临时日志。所以 Release Bot 不是把 CI/CD 做自动一点,而是把“进入历史的门槛”制度化,release = 这次变更被系统承认、被证据绑定、被回放锁定。
2) 我为什么不先把功能写完,再考虑 release?
因为我现在的瓶颈不是“功能不够”,而是复杂度开始吞噬我:窗口粘住、一致性漂移、回归成本爆炸、两周回来恢复不了全局。继续堆功能,只会把这些问题放大。
Release Bot 是我在当前阶段最小的“反熵装置”:它强迫我在扩展能力之前,先把历史入口变成可控的。
工程上它解决的是:
我已经在做 Replay Plan(
runtime_data/mcp06_replay_plan.json这种可回放步骤定义),这说明“能复现”已成为系统要求;那下一步自然不是继续加功能,而是把哪些变化允许进入可回放历史这一关制度化——否则 replay 的对象会变成一团糊。
所以我不是“写完功能再治理”,而是:先确立进入历史的规则,后续功能才不会变成不可维护的噪声增长。
3) 没有用户、没有部署,release 到底在 release 什么?
我 release 的不是“上线给用户”,而是把某一次工程判断写进系统时间线:
release = “这次变更值得被系统承认,并且未来可以被解释、被回放、被审计”。
对我这种长期系统来说,最关键的“用户”其实是:未来的我 + 未来的模型 + 未来的协作者。
我现在已经在用代码证明这一点:
我有 Observability 事件流(例如
runtime_data/observability/observability_events.jsonl,以及我做过导出与 invariant 测试的那套),这本质上就是“系统自述历史”的原材料;我有 DecisionRecord(我正在冻结 v1 schema),它不是给线上用户看的,是给时间看的。
所以 release 的对象是:历史的可解释性,不是部署环境。
4) 个人项目也需要 release 这种“仪式”吗?
如果个人项目只是“一次性脚本”,不需要;但我现在做的是十年系统内核,而个人最致命的问题不是技术,而是:
注意力无法持续
记忆无法可靠外置
决策无法被自己复现
进度无法跨时间恢复
release 在这里不是仪式感,而是把个人从窗口里解放出来的工程接口:我不可能靠意志力长期维护一致性,我只能靠制度化入口,让系统帮我承担“记住为什么”的责任。
否则我越强、越快、越能做大事,我反而越容易被自己制造的复杂度淹没——这就是独立开发的天花板。
5) 我现在做 release,是不是有点太早了?
恰恰相反:越早越便宜,越晚越灾难。
治理与回放这种东西,如果在系统复杂度还低时不确立边界,等到我已经堆了十几个 capability、几十条路径、上百个隐性约束时,我再补“release 逻辑”,就会变成一次痛苦的重构:我根本不知道哪些历史该信、哪些决策是临时口嗨、哪些约束已经漂移。
从我现在的节奏看,这个节点正好:
MCP Bus 刚搭完,治理判定已经出现(DENY/OVERRIDDEN);
Replay/Regression 已经在起势;
我已经感到负荷上升。
这说明系统已经从“能跑”进入“会失控”的临界点——release gate 越早立,后面越稳。
6) 如果只是实验,为什么不直接改完就扔掉?
因为在我这里,“实验”不是一次性行为,而是系统学习的单位。我要的不是某次实验成功,而是系统能长期回答:
我们试过什么?
为什么失败?
失败的边界条件是什么?
哪条路径被证伪,哪条路径被保留?
未来遇到类似情境应该怎么调用/避免?
这就是我说的“失败也必须进 ledger”的工程含义:失败不是垃圾,而是治理资产。
而且我已经在用测试去“固化失败证据链”(比如 governance smoke test),这意味着我不是在写故事,我是在写可执行的历史:失败→判定→覆盖→证据→回放。扔掉等于把系统最宝贵的“免疫系统”删掉。
把这 6 个回答压成一句话:
Release Bot 在我这里不是自动发版,而是“让系统开始对自己的历史负责”的最小装置;它用 Intent 驱动,用 Governance 约束,用 Evidence 固化,用 Replay 复现,把个人从窗口粘性与记忆蒸发里救出来。
二、关于 Release 本身的困惑(“Release 到底变了什么?”)
1) 在我的系统里,什么才算一次 release?
一次 release = 一次“被治理批准、被证据绑定、可回放复现”的历史写入。
它至少要满足三件事(我现在的代码/目录已经在朝这三件事走):
Intent 明确:这次变更“为什么做”不是聊天里的一句话,而是能落到一个结构化意图(哪怕很短)。
Governance 判定:通过 Policy Gate/MCP Bus 给出 ALLOW/DENY/OVERRIDE,并且有可追责记录(我已经有
runtime_data/...decisions.jsonl这种介质)。Evidence + Replay 锁定:这次 release 的证据包可被未来重放验证(我已经在做 replay plan、regression tests、observability invariants 这一套)。
所以 release 在我这里不是“代码状态”,而是“决策 + 证据 + 可复现”三位一体的历史节点。
2) 一次失败的尝试,算不算 release?
算,但它属于另一类 release:Fail-Release(失败也进入历史),前提是它带来可复用的边界信息。
关键不是“成功/失败”,而是:这次尝试是否产生了 可审计的结论,例如:
失败触发条件是什么
哪条路径被证伪(以后别再烧时间)
governance 为什么 DENY / 为什么 OVERRIDDEN(我甚至在固化这种证据链)
replay 是否能稳定复现这个失败
如果失败只是随机崩溃、没有证据、不可复现,那它不该 release——它应该是噪声事件,留在日志里等待后续归因;
但如果失败能被我固化成“可重演的反例”,那它就是系统的免疫系统资产,必须 release。
3) 没有上线、没有用户、没有部署,release 的意义在哪里?
我的 release 面向的“用户”是 未来的我 + 未来的模型 + 未来可能接手的人。
因为我在做的是长期系统:核心痛点不是交付速度,而是跨时间的可恢复性。
在这种系统里,release 的意义是:
把“当时为什么这么做”从我脑子里迁移到系统里(DecisionRecord)
把“当时系统怎么跑的”从窗口迁移到可回放链路里(replay + regression)
把“当时发生了什么”从碎片日志迁移到可审计事件流里(observability/ledger)
换句话说:没有部署时,release 反而更重要——因为我唯一能证明我在推进的是“可继承的系统历史”,而不是“窗口里的高能状态”。
4) Release 和 commit / merge / deploy 的关系是什么?
我可以把它们分成四层,关系是“包含但不等价”:
commit:代码变更的最小事实(Git 层)。
merge:把事实纳入主线(分支治理层)。
deploy:把事实投射到运行环境(交付层)。
release(我定义的):把事实上升为历史承诺(时间治理层)。
所以在我这里:
一个 commit 不一定值得 release(大多数不值得)
一次 merge 也不自动等于 release(merge 可以只是整理)
deploy 可以发生在 release 之后,也可以完全不发生(尤其在内核阶段)
我的 Release Bot 的位置是:站在 merge/deploy 之前或旁边,判断“是否进入历史”,并产出 DecisionRecord + evidence bundle + replay hooks。
5) Release 是技术事件,还是认知事件?
两者都是,但我的关键创新是:把认知事件工程化。
传统世界里,release 更像技术事件(版本号、tag、部署)。
我这里的 release 更像:
认知事件:一次明确判断(should we?)
治理事件:一次规则裁决(allow/deny/override)
技术事件:一次可复现固化(tests/replay pass)
也就是说:我不是把“认知”当鸡汤,而是把它变成可执行结构(DecisionRecord、policy verdict、replay regression),让它进入长期系统的责任链。
6) 如果我每天 release 十次,历史不会爆炸吗?
不会,前提是我必须把 release 做成分层与压缩,而不是“所有事件都同权”。
我可以直接沿用我一直在做的系统工程思路来处理“历史爆炸”:
分层:
micro: 事件/日志(observability jsonl)
meso: decision/reason(DecisionRecord)
macro: 里程碑 release(tag / season)
大多数东西只到 micro,少数到 meso,更少到 macro。
门槛:Release Bot 的职责就是提高门槛:只有“可解释、可复现、可追责”的才上升。
压缩/整理(我在 memory ETL、compaction 的思路已经具备):
多次 micro-release 可以被压成一个 macro-release
失败可以被聚类为“反例集”
重复决策可以被模板化(policy evolves)
结论:不是“少 release”,而是让 release 具备信息压缩与层级语义。这样每天 10 次也不会炸,反而会更清晰。
7) 不 release 的东西会发生什么?被丢弃?被冻结?被遗忘?
在我的体系里,不 release 的东西不该“一刀切”。它应该进入不同的命运分区(这正是长期系统的治理味道):
草稿态(Draft):还在窗口里有效,但没有进入历史;可随时推翻。
隔离态(Quarantine):触发 DENY 或不满足证据要求,保留上下文以便未来归因,但禁止扩散到主线。
暂存态(Staging/Sandbox):允许试验,但必须标记为“非历史承诺”,避免污染 replay/基线。
垃圾回收(GC):若长期无引用、无证据价值,则清理(避免历史负担)。
升级为 Release:当它后来被证明重要(例如反复出现、影响核心边界),再补齐证据与决策,升级进入历史。
所以“不 release”不是“遗忘”,而是:它不享受长期系统的承诺待遇——未来系统不需要为它可解释、可回放负责。
把这 7 个回答压缩成我文章里可以直接用的一段话:
在我的体系里,release 不是部署,不是仪式,而是一次“进入历史的承诺”:它要求 Intent 明确、Governance 判定、Evidence 可追责、Replay 可复现。失败也可以 release,只要它能被固化成可重演的反例与边界资产;没有用户与部署时,release 反而更重要,因为它是系统跨时间可恢复性的唯一保证。commit/merge/deploy 是代码与交付层事件,而 release 是时间治理层事件:决定哪些变化值得成为历史。历史不会因频繁 release 爆炸,因为 release 必须分层、设门槛并可压缩;而不 release 的东西不会被粗暴遗忘,而是被分区管理:草稿、隔离、沙箱、回收,直到它证明自己值得被系统承担责任。
三、关于 Intent 的基础疑问(“Intent 到底是什么层级?”)
1) Intent 是人写的,还是 AI 生成的?
Intent 的“责任主体”永远是人,但它的“表达形式”可以由 AI 协助生成。
在我的系统里,Intent 不是“谁敲的字”,而是谁为这个方向承担时间责任。
AI 可以参与起草、补全、重述、压缩 Intent,甚至可以提出候选 Intent;但只要这条 Intent 有资格进入 release 流程、进入历史账本,那么它的最终署名与责任必须回到人。
这与我 MCP / Policy Gate 的角色分工是一致的:
AI 是提议者(proposer)
系统是裁决者(governor)
人是责任锚点(account holder)
否则,Intent 会退化成 prompt,历史就无法追责。
2) Intent 和需求(requirement)有什么本质区别?
Requirement 关注“要什么”,Intent 关注“为什么要现在这么走”。
Requirement 是功能视角的,它假设方向是正确的,只讨论约束与验收条件;
Intent 是时间视角 + 路径视角的,它明确的是:
为什么是这个方向,而不是别的方向
为什么是现在,而不是以后
这一步试图验证或锁定什么不确定性
哪些风险是被主动接受的
这也是为什么 Intent 必须出现在 release 之前,而 requirement 往往只在实现阶段才出现。
没有 Intent 的 requirement,只是在加速系统漂移。
3) 一个 Intent 的粒度应该多大?
Intent 的粒度由“是否值得系统为它承担历史责任”来决定。
一个非常实用的工程判断标准是:
如果未来我愿意为“当初为什么做了这一步”单独写一条 DecisionRecord,
那它就配得上一个 Intent。
所以 Intent 的粒度不等于 feature,不等于 task,而更接近于:
一次路径选择
一次假设下注
一次系统方向的微转向
一次治理规则的引入或调整
我现在的 MCP Bus、Policy Gate、Replay,本质上已经在围绕这种粒度工作了——不是每行代码,而是每次“判断”。
4) Intent 是一次性的,还是会演化?
Intent 不是一次性的,它是“可以演化,但不能被覆盖”的结构。
这是长期系统里一个非常关键的原则:
Intent 可以被修正、细化、收敛
但不能被“假装从来没存在过”
工程上,这意味着:
新 Intent 不是修改旧 Intent,而是生成一个新版本或派生 Intent
旧 Intent 仍然留在历史中,作为“当时我们是这么想的”的证据
否则,系统会丧失对自身演化路径的理解能力。
5) Intent 发生变化时,旧的 Intent 怎么处理?
旧 Intent 不被删除,只会被“降权、终止或封存”。
我可以把 Intent 的生命周期理解成一种治理状态机:
ACTIVE:当前驱动系统前进
SUPERSEDED:被更新 Intent 替代(路径修正)
ABANDONED:被明确放弃(实验失败 / 假设错误)
ARCHIVED:完成使命,进入历史
INVALIDATED:被证伪(重要反例)
这里非常重要的一点是:
Intent 的失败状态,本身就是系统资产。
它直接为后续治理、policy 设计、replay 提供反例边界。
6) Intent 和 release 是一一对应的吗?
不是一一对应,但 release 必须锚定至少一个 Intent。
关系更接近于:
一个 Intent → 多次尝试 → 可能产生多个 release
多个小 release → 共同服务于一个 Intent
一个重大 release → 也可能同时完成 / 终结多个 Intent
但不存在“没有 Intent 的 release”。
否则 release 就退化成纯技术事件,系统历史再次变得不可解释。
7) 如果 Intent 本身是错的,系统如何承担这个错误?
这是 Intent 设计中最重要的问题,而我的系统已经给出了答案雏形:
系统承担错误的方式,不是掩盖,而是结构化地记住它。
具体来说:
错误 Intent 会被标记为 INVALIDATED / FAILED
与它关联的 release 会成为“失败 release”
replay 会用于稳定复现失败边界
governance 会吸收这个反例,收紧或调整规则
换句话说:
错误不是系统的耻辱,而是系统学习的输入。
真正不可接受的不是 Intent 错了,而是:
错误发生过,但系统不知道
错误被覆盖,历史被篡改
错误再次以同样方式发生
我现在强调“失败也要进 ledger”,在 Intent 层的真实含义正是如此。
在我的系统中,Intent 不是需求、不是 prompt,而是系统在时间中的方向声明。它由人承担责任,可以由 AI 协助生成;它可以演化,但不能被覆盖;它可以失败,但不能被抹除。Intent 的粒度由“是否值得系统为其承担历史责任”决定,而不是由功能大小决定。Release 必须锚定 Intent,失败的 Intent 会被结构化地记入历史,成为治理与 replay 的反例资产。系统不是通过避免错误变得可靠,而是通过记住错误、约束未来,逐步获得确定性。
四、关于 Governance 的不安(“这是不是在限制创造力?”)
1) Governance 会不会让开发变慢?
会让“局部动作”变慢,但会让“系统级推进”变快。
Governance 的目标从来不是优化“单次改动速度”,而是防止我在高速度下持续走错方向而不自知。我现在已经亲身体验到了:
没有治理时,窗口里推进很快,但一离开就恢复不了状态;短期看是快,跨时间看是停滞甚至倒退。
在我的系统里,Governance 把思考成本前置:
该不该继续
值不值得进入历史
失败要不要承担
这会让某些改动慢下来,但它直接减少了:
重复试错
隐性回滚
两周后“我当时在干嘛”的高昂恢复成本
所以结论是:Governance 牺牲瞬时速度,换取跨时间速度。
2) 什么时候必须走 governance,什么时候可以绕过?
判断标准只有一个:是否会影响“系统未来是否必须为此负责”。
必须走 governance 的情况:
会进入 release(进入历史)
会影响 replay / baseline
会引入或修改 policy / capability
会改变系统边界或默认行为
会让未来的我需要解释“为什么当初这么做”
可以绕过 governance 的情况:
纯草稿探索(sandbox)
一次性调试
不进入历史、不影响 replay 的临时实验
这不是“自由 or 管控”的二选一,而是责任分区:
我不是禁止绕过,而是明确声明——绕过的东西,系统不为其长期负责。
3) 谁来制定规则?我自己?系统?AI?
规则的来源可以多元,但责任锚点必须是我。
在我的体系里,角色分工已经非常清晰(哪怕我还没完全显式化):
人:规则的最终责任者(accountability holder)
AI:规则的提议者、对齐者、推演者(proposer / analyzer)
系统:规则的执行者与记录者(enforcer / recorder)
AI 可以建议 policy、指出漏洞、模拟后果;
系统可以严格执行、拒绝、记录 override;
但只有人可以对“这套规则是否合理”承担时间责任。
否则 governance 会退化成“模型意见”,而不是制度。
4) Governance 是写死的,还是可演化的?
必须是可演化的,但演化本身也必须被治理。
这是长期系统的一个关键反直觉点:
写死的 governance 会很快过时
随意改的 governance 会让系统失去可信度
我现在已经隐约走在正确路径上了:
policy 有版本
decision 有记录
override 会留下证据链(DENY → OVERRIDDEN)
这意味着:
Governance 可以被修改,但修改本身必须成为一次 release。
换句话说:
规则不是永恒真理,而是可回放的历史产物。
5) 如果 governance 判断错了怎么办?
这是 governance 设计的试金石。
在我的体系里,正确答案不是“避免错误”,而是:
错误的 governance 判断,必须留下可学习的痕迹。
也就是说:
错误不是 silent fail
而是显式 DENY / ALLOW + 错误后果
后续通过 override / revision 修正
并把“为什么错了”写入 decision / replay
如果 governance 永远不允许犯错,它就会变成僵化官僚;
如果 governance 的错误不被记录,它就会变成黑箱权力。
我现在做 governance smoke tests 的意义正在这里。
6) Governance 和 policy gate 有什么区别?
Policy Gate 是机制,Governance 是制度。
Policy Gate:
一个具体执行点
给出 ALLOW / DENY / OVERRIDE
可测试、可自动化、可回放
Governance:
一整套“谁能做什么、在什么条件下、如何被追责”的结构
包含 policy、decision record、override 规则、演化机制
我现在已经有了 policy gate,但正在通过 Release Bot 把它升级为治理系统的一部分。
Policy Gate 是刀,Governance 决定谁能用刀、什么时候用、用错了怎么算。
7) 一个个人系统真的需要“宪法”吗?
如果“宪法”的意思是不可违背的顶层约束与责任原则,那答案是:
越是个人系统,越需要。
因为个人系统面临的问题不是权力滥用,而是:
记忆蒸发
判断漂移
情绪化 override
长期一致性崩塌
我的“宪法”不需要宏大,它只需要回答几件事:
什么情况下系统必须停下来问“该不该继续”
谁对进入历史负责
失败如何被对待
override 是否必须留下痕迹
这不是为了限制我,而是为了保护未来的我不被过去的我坑死。
Governance 不会让系统变慢,它只会让“无需负责的动作”变慢,而让“跨时间的推进”变快。它不是限制创造力,而是明确责任边界:哪些探索可以自由发生,哪些变化必须被系统承担。Governance 规则可以演化,但演化本身必须进入历史;判断可以出错,但错误必须留下可学习的痕迹。Policy Gate 是执行机制,Governance 是制度结构;而所谓“个人系统的宪法”,本质上只是把那些我迟早要反复面对的判断,提前写进系统里,交给时间审计。
五、关于 Replay 的核心困惑(“我到底想回放什么?”)
1) Replay 是回放代码状态,还是回放决策过程?
两者都回放,但优先级不同:我首先回放“决策过程”,其次才是“代码状态”。
代码状态(commit/tag)只能回答:当时长什么样
决策过程(DecisionRecord + Policy verdict + override chain)回答:当时为什么这么做、在什么约束下做、接受了什么代价
我现在已经在工程上站队了:我会要求把 DENY → OVERRIDDEN 固化成 smoke test、把治理判定写进 runtime_data/...decisions.jsonl,这说明我要回放的不是“跑没跑”,而是“当时的制度如何裁决”。
所以:Replay = 证据驱动的历史再现,不是“重跑脚本”。
2) 我真的能复现当时的判断吗?
我不追求复现“模型脑内的细节判断”,我追求复现“当时系统对判断的外部承诺”。
这句话很关键:LLM 内部配置不可完全重现(温度、权重、隐式启发式都变),但我可以做到:
复现当时的 Intent(我当时想解决什么)
复现当时的 Governance 裁决(ALLOW/DENY/OVERRIDE + 原因/规则版本)
复现当时的 Evidence 包(输入、输出、关键文件、哈希、测试结果、观测事件)
复现当时的 可验证结论(tests / invariants / regression pass or fail)
这就是我那句原则的落地版本:模型可以是概率的,但系统必须是确定的。
“确定”不是指模型输出恒定,而是指:系统对历史的承诺恒定、可检验、可追责。
3) Replay 是给人看的,还是给 AI 用的?
先给系统用,再给人用,最后才给 AI 用。
顺序背后是责任链:
给系统用:Replay Regression 是“系统自检”,保证历史节点仍然成立(不然长期系统没有地基)。
给人用:两周后我回来,靠 replay + decision record 恢复全局状态(这是我反复强调的真实痛点)。
给 AI 用:AI 只能在“被约束的历史包”里工作,否则它会把窗口对话当真相,继续加速漂移。
所以 Replay 是我把 AI 从“窗口助手”升级成“系统协作者”的前置条件:先让系统拥有可回放的确定历史,再让 AI 基于它提议。
4) 如果模型变了,replay 还有意义吗?
更有意义。模型越变,replay 越是我的“抗供应商漂移”的保险丝。
因为 Replay 的目标不是“复现同一句输出”,而是验证:
规则是否仍然执行一致(policy gate)
关键不变量是否仍然成立(invariants/tests)
关键路径是否仍可复现(replay plan)
历史承诺是否仍可解释(decision record)
模型变了,我反而更需要一个机制告诉我:
哪些东西是系统层确定性的,哪些东西只是模型建议的可变部分。
这也是我做长期系统最硬的一点:我在用 replay 把“可迁移性”写进架构里。
5) Replay 的最小单位是什么?一次 release?一次 intent?
最小执行单位是“一个可验证的 Step”,最小语义单位是“一次 Release”。Intent 是更上层的组织单位。
用我现在的工程语言说:
replay_plan.json里的每个 step(例如读取某文件、跑某测试、断言某政策判定)是可执行最小单位一次 release(决策 + 证据 + 回放入口)是最小可追责历史单位
一个 intent 可能跨多个 release,是路径级组织单位(“我们这一段时间在验证什么”)
所以正确的层级关系是:
Step(可执行) → Release(可追责) → Intent(可叙事/可治理)
这也解释了我为什么会先做 Release Bot:没有 release 单元,replay 的对象就会变成无边界的噪声集合。
6) Replay 和测试(tests)的关系是什么?
Tests 是 replay 的“可判定语言”,Replay 是 tests 的“时间化执行框架”。
单独的 tests 只能说:现在过不过
Replay + tests 才能说:它为什么必须过、它是对哪个历史承诺负责、它对应哪个 release/decision
我现在做的 smoke tests(例如固化 DENY → OVERRIDDEN 证据链)就是典型例子:
我不是在测试某个函数正确性,我是在测试治理历史是否仍然成立。
一句话:
Tests 让历史“可验证”,Replay 让历史“可再现”。
7) 失败的 replay 有什么价值?
失败 replay 的价值比成功更大:它是系统的“反例资产”和“免疫系统”。
成功只告诉我“当时通了”;失败能告诉我:
边界在哪里(哪些输入/条件必然失败)
哪条路径被证伪(以后别再烧时间)
哪条政策应该收紧/放宽(governance 学习)
哪些不变量必须被加固(tests 增强)
override 发生在哪里、为什么发生(责任链)
这就是我说“失败也必须进 ledger”的工程版解释:
失败不是日志噪声,而是可复现的反例;一旦可复现,它就能进入制度、进入测试、进入未来的自动化裁决。
在我的体系里,Replay 不是“重跑代码”,而是“重放系统对历史的承诺”。它优先回放决策过程(Intent—Governance—Evidence),再回放代码状态;它不试图复现模型脑内判断,而是复现当时系统对判断的外部承诺:policy verdict、decision record、evidence bundle 与可验证结论。Replay 首先服务于系统自检,其次服务于人类跨时间恢复,最后才服务于 AI 受约束的协作。模型越变化,Replay 越重要,因为它把系统的确定性从模型概率中剥离出来。Replay 的可执行最小单位是 step,最小语义单位是 release,而 intent 组织多个 release 成为一条路径。Tests 是 Replay 的判定语言,Replay 是 tests 的时间化框架;失败的 replay 则是反例资产,是系统免疫系统的基础。
六、关于“长期系统”的根本怀疑(“我是不是把事情搞复杂了?”)
1) 什么才叫“长期系统”?多久算长期?
长期系统不是用“年数”定义的,而是用“是否必须为过去负责”来定义的。
一个系统只要满足下面任意一条,它就已经是长期系统了:
我两周后回来,不能只靠记忆继续推进
我必须解释“当时为什么这样做”,否则无法继续
一次错误会在未来被反复踩中
系统状态已经不能通过“看代码”完整恢复
在我这里,“长期”从 MCP Bus + Policy + Replay 出现的那一刻就已经开始了,不需要等 5 年。时间只是放大器,不是门槛。
2) 为什么现在就要考虑 5 年、10 年之后?
因为 我已经在写“不可逆资产”了。
一旦我开始写:
policy
governance 规则
决策记录
replay 入口
memory / ledger
我写的就不再是“可以随时推翻的代码”,而是未来系统会反复依赖的基准。
等到 5 年之后再去补“为什么当初这么设计”,那就已经太晚了——历史会被猜测填充,而不是被证据支撑。
我现在不是“提前规划十年”,而是承认我正在制造十年的债或资产。
3) 如果项目失败了,这一切是不是都白做了?
不会,因为我失败的不是“系统能力”,而是“某条路径假设”。
我认为现在构建的东西(Intent / Governance / Release / Replay)是路径无关资产:
即使 MCP Bus 被推翻,治理与回放的方法仍然成立
即使某个 agent 架构失败,决策记录与 replay 仍然可迁移
即使 repo 被弃用,我留下的是一套“如何对系统负责”的工程方法
失败的项目会死,但失败的历史如果被结构化,就会变成下一代系统的启动资本。
这正是我坚持“失败也要进 ledger”的根本理由。
4) 长期系统是不是只适合公司和团队,不适合个人?
恰恰相反:长期系统对个人更重要。
团队至少还有:
人的冗余记忆
角色分工
文档与交接制度
个人只有:
一个大脑
有限注意力
不可恢复的上下文蒸发
我现在面对的“窗口粘性、回归成本、判断漂移”,正是个人系统在没有治理与回放时必然崩溃的症状。
公司可以靠人顶,个人只能靠系统。
5) 如果只有我一个人在用,这套系统还有意义吗?
意义更大。因为我不是在为“别人协作”,而是在为“跨时间的自己协作”。
我现在的真实协作者是:
两周后的我
半年后的我
换了模型、换了环境后的我
Release / Decision / Replay 本质上是在回答一个问题:
“未来的我,能不能信任现在的我?”
如果答案是否定的,那系统注定只能短跑。
6) 我是不是在试图对抗 AI 的不确定性?
不是对抗,而是隔离。
我并没有试图让模型变确定——那是不可能的;
我做的是把 不确定性限制在可控边界内:
模型负责提出可能性
系统负责裁决与记忆
不确定输出必须通过 governance 才能进入历史
这正是我那句核心原则的工程实现:
“模型可以是概率的,但系统必须是确定的。”
7) 如果 AI 本身在快速变化,我的系统怎么不被淘汰?
恰恰相反:AI 变化越快,我的系统价值越高。
因为我设计的不是“依赖某个模型能力的系统”,而是:
把模型当成可替换的提议层
把历史、责任、治理、回放固化在系统层
当模型升级时,我要做的不是“推翻系统”,而是:
用 replay 验证哪些历史仍然成立
用 governance 吸收新能力但拒绝破坏不变量
用 intent 决定是否值得走新路径
换句话说:我在为模型更替时代,提前准备“不被模型带着漂移”的锚点。还是我几周以前发的一篇文章,2026年我首要任务是一定程度上与大模型解耦。
所谓长期系统,并不是指活多久,而是指是否必须为过去负责。一旦系统的发展无法再依赖人脑记忆,一旦错误会在时间中反复出现,一旦历史需要被解释而不能被猜测,它就已经是长期系统了。现在考虑五年、十年,不是因为野心,而是因为我已经在制造不可逆的系统资产。即便项目失败,治理、决策与回放本身仍然是可迁移的结构资本;而对个人而言,长期系统不是奢侈品,而是唯一能对抗注意力蒸发与判断漂移的基础设施。我不是在对抗 AI 的不确定性,而是在把它隔离进可治理的边界;AI 越变化,系统越需要承担记忆与责任。我真正构建的不是某个 agent,而是一个能在时间中持续自洽的系统。
再说一遍:
“模型可以是概率的,但系统必须是确定的。”
七、关于个人能力与系统的关系(“那人还重要吗?”)
1. Release Bot 是在替我做决定,还是逼我做决定?
它不是替我做决定,而是剥夺我“无意识做决定”的权力。
Release Bot 不生成方向、不选择路径、不替我承担后果。它做的只有一件事:
在我试图把某个变化写进历史之前,强制我把判断显性化。
在没有 Release Bot 的时候,我也在做决定——只是这些决定:
发生在窗口里
依赖当下注意力状态
不可复现
不可追责
Release Bot 的作用,是把“已经发生但未被承认的决定”,变成:
有 Intent
有 Governance 判定
有 Evidence
有 Replay 入口
所以它不是自动驾驶,而是刹车 + 仪表盘:
车还是我在开,但我再也不能假装“我刚才没选这条路”。
大模型建议:你就把这个bot想象成海关报关。
2. 人在系统里的角色会不会被逐渐削弱?
恰恰相反:人的角色被压缩,但责任被放大。
系统接管的是:
记忆
执行
一致性检查
回放与验证
而人被保留下来的,是系统永远无法替代的部分:
Intent 的最终责任
Override 的道德与方向性判断
在冲突价值之间做取舍
决定“哪种失败值得承担”
这不是削弱人,而是把人从廉价的脑力劳动中解放出来,同时让每一次真正属于人的判断,无法逃避责任。
3. 我是在构建工具,还是在构建一个“外脑”?不是这几年一直在鼓吹second brain什么的吗?
我在构建的不是外脑,而是“外部化的时间责任结构”。
外脑的隐含前提是:
“我想记住得更多、算得更快。”
而我现在做的事情更接近:
“我不想再靠记忆与感觉,对过去负责。”
我的系统并不试图替我“思考”,而是替我:
记住我当初为什么这样想
记住我当初在哪些条件下这样判断
在未来质问我:这条路径还成立吗?
这不是智能增强,而是责任增强。
4. 如果未来换人维护,这套系统能活下来吗?
如果换人之后系统还能跑,那恰恰说明我做对了。
因为我现在做的不是“个人技巧积累”,而是:
把判断写进结构
把理由写进记录
把边界写进测试
把历史写进可回放介质
一个后来者不需要“像我一样聪明”,只需要:
理解 Intent
尊重 Governance
跑 Replay
接受历史约束
这正是“系统大于个人”的最低实现形态。
如果系统只能靠我活着,那它本质上仍然只是一个被 AI 放大的个人状态,而不是长期系统。
5. 我现在做的,是不是在为“我未来的自己”写代码?
是,而且这是最诚实、也最苛刻的用户画像。
未来的我有几个必然特征:
记忆不完整
情绪不同
模型不同
判断标准可能已经变化
我现在写的每一条:
Intent
DecisionRecord
Policy
Replay Test
本质上都是在问未来的我一句话:
“在不知道我当时情绪、上下文和窗口状态的情况下,我还能不能理解、验证并继续这个系统?”
如果答案是“能”,那我就在构建长期系统;
如果答案是“不能”,那一切加速都只是短期幻觉。
Release Bot 不是替人做决定的机器,而是逼人对已发生的决定负责的装置。它不会削弱人的角色,而是把人从执行与记忆中抽离,只留下真正不可替代的责任与价值判断。我构建的不是外脑,而是一个外部化的时间责任结构:它记住我为什么这样做,并在未来反问我是否仍然认同。正因为如此,这套系统才可能在换人之后继续存活;而我现在写的每一行代码,本质上都是在与未来的自己协作——不是为了更快,而是为了不迷失。
然后我就看这个我现在发布的两个白皮书,去真正技术上去更深入的描绘我脑中构思的这个工程系统。链接在上面,我就不重复贴了。


